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ABSTRACT 

Currently the United States Navy is making a small 

footprint in the world’s littoral regions with the help of 

the United States Marine Corps.  In Iraq, the Marine Corps 

is actively conducting Riverine operations, however they are 

overly tasked and in need of permanent replacement by the 

United States Navy.  In order to alleviate the Marine Corps, 

the Naval Expeditionary Combat Command with its Riverine 

Squadrons will soon take over these Riverine operational 

commitments in order to reestablish supremacy throughout the 

Riverine environment.  With this in mind, the Chief of Naval 

Operations, Center for Naval Analyses requirements, System 

Engineering Analysis (SEA-11) class of 2007 developed a 

concept of operations (CONOPS) which the Total Ships System 

Engineering (TSSE) class of 2007 used to develop a prototype 

platform, which met all initial design requirements.   In 

order to take full advantage of this prototype platform, 

every effort was taken in order to minimize the number of 

crew members on station at any given time.  The purpose of 

this thesis is to demonstrate the use of the direct method, 

which will allow the Specialized Command and Control Craft 

(SCCC) to conduct a fully autonomous Underway Replenishment 

at Sea (UNREP) with a standard supply vessel.  The direct 

method approach allows for a smooth path is created instead 

of using waypoint navigation.  Additionally, this method 

allows for real-time updates at (1Hz).   
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I. INTRODUCTION  

A. BACKGROUND  

When the end of the “Cold War” with the Soviet Union 

came about, there was a major shift in the United States 

Naval Doctrine.  With the United States Navy’s major 

opponent on the high seas eliminated, so to was the threat 

of fighting a major naval battle on the high seas as was the 

threat in years past.  After numerous studies and analysis 

of current naval operations and assets, in August 2005 the 

Chief of Naval Operations (CNO) announced that the United 

States Navy would reconstitute a Riverine capability, 

allowing the United States Navy to transition from a blue 

water navy to a force which would be capable of sustaining 

operations in the littoral regions of the world.  The CNO’s 

vision called for the resurgence of the brown water Riverine 

Force which is called out in the CNO’s Concept of Operations 

(CONOPS) for the 21st Century Riverine Force.  This document 

calls for the formation of a Naval Expeditionary Combat 

Command, which requires a Riverine force as one of its 

elements.  The primary mission for this force is to conduct 

Phase 0 (shaping and stability) operations, to provide 

maritime security and to carry out additional tasks 

specifically related to the Global War on Terrorism. [1] 
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Figure 1.   Blue Water to Brown Water Navy 

 

Currently the United States Navy is making a small 

footprint in the world’s littoral regions with the help of 

the United States Marine Corps.  In Iraq, the Marine Corps 

is actively conducting Riverine operations, however they are 

overly tasked and in need of permanent replacement by the 

United States Navy.  In order to alleviate the Marine Corps, 

the Naval Expeditionary Combat Command with its Riverine 

Squadrons will soon take over these Riverine operational 

commitments in order to reestablish supremacy throughout the 

Riverine environment.      

Based on the Chief of Naval Operations, Center for 

Naval Analyses requirements, System Engineering Analysis 

(SEA-11) class of 2007 developed a concept of operations 

(CONOPS) which the Total Ships System Engineering (TSSE) 
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class of 2007 used to develop a prototype platform, which 

met or exceeded all initial design requirements.  The first 

step in the development of this new platform, was to conduct 

a Capability Gap Analysis of existing Naval assets both US 

and foreign.  It was quickly determined from this analysis, 

that no current ships were capable of fulfilling all of the 

initial requirements requested and a new platform would be 

needed to accomplish the vision of the CNO.  Based off of 

these results, a functional Element Decomposition of the 

system requirements was developed and a preliminary design 

was identified.  The ultimate design evolved into a multi-

hulled Specialized Command and Control Craft (SCCC), which 

would utilize three multi-mission craft (MMC) to accomplish 

all mission requirements.   

The existing procedure for conducting Riverine 

operations is to first establish a land forward operating 

base and to then deploy Riverine assets from this land based 

support center to carryout various missions.  While Iraq has 

shown a land basing system to be effective, in the future it 

maybe more likely that the Navy will require a sea based 

support structure in order to accomplish its Riverine 

mission.  To accomplish this future scenario, the Navy could 

use existing assets; however, this approach limits the 

Navy’s future Riverine footprint due to the limited access 

current assets have in the majority of the rivers of the 

world due to these assets’ slow speeds and deep drafts.  To 

structure the United States Riverine forces in such a way as 

to create maximum operational flexibility in the majority of 

the world’s littoral regions, this new platform must be 

produced.  
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B. MOTIVATION 

1. Manning   

The Riverine forces will comprise of 800 personnel 

divided among three squadrons.  Minus the command structure 

for the Riverine force, each squadron allotted 225 

personnel.  Each squadron will consist of three SCCCs and 

nine MMCs.  The TSSE Manning Study resulted in the need for 

216 personnel to fully man these ships, with the remaining 

nine comprising the command structure of the squadron.  The 

command structure will remain afloat on the Global Fleet 

Station (GFS) in order to manage the logistics of the SCCC.  

The GFS will be removed from the Riverine Area of Operation 

and in Blue water.   

 
Figure 2.   Bridge Layout 

 
 

Every effort has been made in the design of the 

Tiberinus Class to minimize the number of crew members on 
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station at any given time.  With this in mind, the bridge 

will be the only actively manned space on the ship.  As with 

existing naval ships, the bridge has been organized to allow 

the commanding officer to oversee all aspects of navigation; 

however, the bridge on the Tiberinus Class has also 

incorporated the Combat Information Center and Damage 

Control Central, in an effort to centrally locate all 

controlling stations.  All bridge watch stations will be 

equipped with touch screen panels which will enable any 

watch stander to reassign their watch station to receive 

additional information from any other watch station and take 

control from their console.  Figure 2 shows a purposed 

bridge layout.  With the changes from traditional naval 

watch team structure, it will require a crew of 72 personnel 

to fully man the Tiberinus SCCC and the three associated 

MMCs.    

2. General  

Due to the reduced size and complexity of the Tiberinus 

Class, significant advances in automation of processes and 

procedures had to be achieved in order to allow its reduced 

crew to fully operate the ship in efforts to achieve all 

mission objectives.  As a result, all efforts have been made 

to allow the ship’s crew to operate the ship with minimal 

personnel on station.   

Currently there are no options for ships to conduct 

Underway Replenishment at Sea (UNREPS) operations 

autonomously.  The ability to accomplish this would allow 

for increased force flexibility and operation.  

Additionally, if not used for fully autonomously UNREPS, 

this technology could be used as visual cueing for complex 
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formation maneuvers, UNREPS, plane guard operations, or even 

pier dockings.  This technology could be incorporated with a 

heads up display, which would use standard maneuvers to 

build a database of near-optimal trajectories calculated 

beforehand.  These near-optimal trajectories would allow the 

Officer of the Deck (OOD) to not just mentally visualize the 

command, but this technology would allow the OOD to actually 

see a simulation of where he or she will end up, thus adding 

to the overall situational awareness.             

C. SCOPE  

The scope of this thesis will consist of analytically 

developing a path-planning process which will generate 

trajectories for an UNREP between a standard USNS oiler and 

the SCCC.  The first step in achieving this objective will 

be to develop a hydrodynamic model of the SCCC in order to 

utilize the equations of motion in which it will be used to 

simulate the vessel movement.    

The next step will be to formulate the rendezvous 

trajectories based off of mathematical basis.  With this 

information, the factors which will effect the trajectories 

shape can be explained and constraints can be formulated to 

take into account both permissible trajectories and the 

vessel constraints. From here, this information will be used 

to generate the performance index of the vessel.   

After the trajectories are computed, the inverse 

dynamics will then be used to calculate the required states 

of the vessel at each point upon the trajectory path.  In 

order to minimize any violations of the optimal parameters, 
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the values generated by the trajectory algorithm and the 

inverse dynamics will be used in the performance index.    

D. PROBLEM FORMULATION  

The problem can be summed up as follows:  The supply 

vessel will provide a rendezvous point.  From this point, as 

an example they will suggest a course of 090 degrees, speed 

13 knots; however, as is often the case, they may need to 

maneuver in order to avoid a contact or to create a better 

UNREP situation.  As the supply vessel maneuvers, they will 

send updates to the SCCC so that it may make real-time 

updates in order to achieve station at a lateral separation 

distance of 140 ft, while maintaining C090/S13kts.   

Once this is achieved, a laser range find system will 

be employed to maintain the lateral separation.  This is 

illustrated in the figure below.   
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Figure 3.   Problem Outline 

 

The figure above shows a pictorial representation of 

the problem as described above.  The proposed sequence of 

events is to have the supply vessel communicate with the 

SCCC in order to command the SCCC to proceed to the 

rendezvous point.  The SCCC will then compute the necessary 

trajectory to complete the mission and reply with an 

acknowledgement or the SCCC will decline the command 

request.  A denial from the SCCC would constitute a 

violation in one of the system constraints and a request by 

the SCCC would then be sent in order to allow the SCCC to 

reach the rendezvous point by either altering the time of 

Course Changes 

   140 ft 

Updates based 
on course 

 

USS SUPPLY 

SCCC 
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arrival or by requesting a different rendezvous point all 

together.  This update would be achieved at a rate of (1 Hz) 

or real-time.  

E. THESIS STRUCTURE 

The intent of this research is to develop a direct 

method control for the SCCC in order to allow for an 

autonomous UNREP.  This will be conducted by first 

determining the equations of motion, followed by the 

development and validation of the trajectories, and finally 

by the vessel simulations.   

Chapter II will focus on the Tiberinus Class.  It will 

focus on the equations of motion for the SCCC and the vessel 

simulation development.  Chapter III explains the theory and 

equations used for the direct method for rapid prototyping.   

Chapter IV will focus on the development and validation of 

the trajectories for the SCCC.    Chapter V will present a 

simulation for the UNREP between the SCCC and a supply 

vessel.  Additionally, Chapter V will provide the thesis 

conclusions.  
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II. THE TIBERINUS CLASS 

A. SPECIALIZED COMMAND AND CONTROL CRAFT DESCRIPTION  

The Tiberinus Class Ship has been designed to provide 

command, control and support for Shaping and Stability 

operations.  In support of the previous mentioned 

operations, the SCCC will provide Maritime Security and 

carry out additional tasks specifically related to the 

Global War on Terrorism (GWOT) throughout the littoral 

regions of the world.  By design, the Tiberinus Class will 

provide a sea-based maritime capability which will enable 

U.S. forces to have an enhanced presence in their areas of 

operation, will maintaining the legitimacy and sovereignty 

of the United States’ ally and coalition partners lands.   

Figure 4.   SCCC and MMC 
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This class has been designed to allow for a Riverine 

force to sustain a forward presence within a Riverine 

environment anywhere in the world for an indefinite period 

of time, while maintaining the capability of conducting 

interdiction operations, low intensity combat operations, 

Visit Boarding Search and Seizure (VBSS), maritime security 

operations, and waterborne checkpoints.  

Each Tiberinus Class Ship has been fully designed to be 

independent of each other and will provide all of its own 

hotel services for its embarked personnel.  Although the 

Tiberinus Class has primarily be designed in a supporting 

role, each ship has been designed to allow it to carryout 

the same missions as the MMCs in reference to a combat role.  

The characteristics of this class are as shown in the table 

below.   

 

 

 

Table 1.  Ship Characteristics 
 
 

Characteristics 
Length (LOA) 135 ft 

Beam 68 ft 

Speed 40+ kts 

Draft 6.2 ft 

Range (Design) 1,500 nm 

Range (Maximum)  3,750 nm 
Displacement 
(Design) 550 LT 

Aircraft 
1 H-60 (landing, not 

housed) 
Mission Craft 3 JMECs / MMCs 
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B. EQUATIONS OF MOTION 

In designing the model for this vessel, the first step 

is to determine the equations of motion.  Since the SCCC and 

the supply vessel will be operating in two dimensions, only 

equations in the horizontal plane will be considered, 

however, this process will be described for a three 

dimensional application for future iterations.  This is a 

somewhat common equation development and will be briefly 

described below.   

When dealing with relative motion certain assumptions 

must be established in regards to the motion boundaries.  

For the purposes of this research, it will be assumed that 

the vessel will act as a rigid body, which will enable for 

the calculation of forces and moments on the vessel.  

Additionally, it will be assumed that the Earth’s rotation 

is negligible in regards to acceleration components of the 

vehicle’s center of mass.  This will allow for the illusion 

that the vessel will be moving over a stationary plane.  

Finally, it will be assumed that the forces acting on the 

vessel will have their origins in an inertial and/or a 

gravitational prospective.  Additionally, the other primary 

forces action on the vessel will be hydrostatic, propulsion, 

thruster, and hydrodynamic forces from lift and drag.   

For vehicles and vessels described in terms of three 

dimensional components, the velocity of these 

vehicles/vessels will be accounted for using six terms given 

as surge, sway, heave, roll, pitch, and finally yaw.  For 

the purpose of this research, surge (u) is the vessels 

forward speed; sway (v) is the side slip velocity, heave (w) 

corresponds to a velocity component in the local Z 
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direction, however, its global velocity components do depend 

on the vessels heading, pitch, and roll.  These three 

components makeup the body fixed coordinate as shown below. 

0 ( )[ ]R T ui vj wkα= + +&  (2-1) 

The other three terms are represented of the angular rate of 

rotation of the bodies fixed frame ω  as shown below. 

[ ]pi qj rkω = + +  (2-2) 

The vector quantity of these additional three terms, have 

their defined meanings in terms of the vessel motion.  The 

vessel “roll rate” is described by the p component in 

equation (2-2).  The vessel “pitch rate” is described by the 

q component in equation (2-2).  Finally, the “yaw rate” of 

the vessel is described by the r component as seen in 

equation (2-2).  These particular components would be sensed 

by the onboard gyro of the SCCC.  All of these components 

combined, account for the overall velocity of the vessel, 

which can be displayed as shown below or as later displayed 

in Chapter III. 

[      ]Tx u v w p q r=  (2-3) 

 All of the applied external loads for the body 

coordinate components are represented by the vector 

components of forces which are applied on the body of the 

vessel and the moments which are also applied at the center 

of the body fixed frame as shown below.   

 

( )           (2-4)G G

app

g app

app

X
dm m Y
dt

Z

⎡ ⎤
⎢ ⎥⎧ ⎫+ × + × × + × − =⎨ ⎬ ⎢ ⎥⎩ ⎭ ⎢ ⎥⎣ ⎦

v v f&ϖ ρ ϖ ϖ ρ ϖ
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( ) { }          (2-5)
app

o o g app

app

G G

K
m M

N

⎡ ⎤
⎢ ⎥+ × + × + × × − = ⎢ ⎥
⎢ ⎥⎣ ⎦

I I v v m& &ω ω ω ρ ρ ω

 

 

( ) [ ( )  ( )  ( )  ( )  ( )  ( )]T
app app app app app appF t X t Y t Z t K t M t N t=  (2-6) 

 Due to the SCCC being in its first iteration of design, 

the hydrodynamic coefficients were computer simulated in 

order to determine the necessary hydrodynamic coefficients 

for the equations of motion for the vessel.  For the purpose 

of this thesis, the constants and hydrodynamic coefficients 

for the SCCC are not included due to the non-trivial nature 

of the task and the unconventional hull shape and type.   

It is often difficult to assess the vessels mass 

moments of inertia about its Center of Gravity (CG), due to 

the CG change with loading and unloading of the vessel.  

These loading and unloading changes are usually symmetric, 

which is ideal when attempting to maintain the vessels 

proper trim and heel under normal static conditions.  

Typically, the mass and angular motion of the vessel is 

described through the mass moment of inertia matrix, which 

is shown below. 

0    (2-7)
xx xy xz

yx yy yz

zx zy zz

I I I
I I I I

I I I

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦  

The elements in the above matrix can be determined by the 

following equations below. 

2 2

1
( )      (2-8)

N

xx i
i

I dm y z
=

= +∑
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2 2

1
( )      (2-9)

N

yy i
i

I dm x z
=

= +∑  

2 2

1
( )      (2-10)

N

zz i
i

I dm x y
=

= +∑  

1
( )      (2-11)

N

xy yx i
i

I I dm xy
=

= = −∑  

1
( )      (2-12)

N

xz zx i
i

I I dm xz
=

= = −∑  

1
( )      (2-13)

N

yz zy i
i

I I dm yz
=

= = −∑  

With the angular velocity vector express as a column vector 

as is shown below, 

     (2-14)
p
q
r

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

ω =

 

the angular momentum of the vessel can then be expressed as: 

o oH I w=  (2-15), 

which will allow one to utilize Newton’s second law in order 

to achieve the following equation below. 

2

0 2       (2-15)o G
G

d dM m
dt dt

⎛ ⎞
= + ×⎜ ⎟

⎝ ⎠

H Rρ
 

The right hand term in equation (2-15) is representative of 

the moment of the inertial reaction of the sum of the 

external forces acting on the vessel. 

The vertical plane for the equations of motion will 

begin with setting all horizontal plane variables to zero, 

in order to allow only w, q, θ , and z to be the only 
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variables of concern.  This, with the addition of a constant 

speed and utilizing small angular changes will allow one to 

utilize a linear system approach.  The reduced equations are 

shown below. 

0 ( ) cos ( )r fmw mU q W B Z tθ δ= + − +&  (2-16) 

( )sin ( )yy B G fI q Z B Z W Z tθ δ= − +&       (2-17) 

qθ =&     (2-18) 

One can then manipulate the above equations to create a more 

useable format, which is shown below in the next set of 

equations that will allow the user to conduct matrix 

operations and finally display the state and control 

matrices. 

( ) ( ) ( )v v v v v sM x t a x t b tδ= +&  (2-19) 

              0

         0       (2-20)

0                    0        1

w q

v w yy q

m Z Z

m M I M

− −⎡ ⎤
⎢ ⎥

= − −⎢ ⎥
⎢ ⎥⎣ ⎦

& &

& &  

        mU            0

                            (2-21)

0                  1                 0

w o q

v w q B G

Z Z

a M M z B z W

+⎡ ⎤
⎢ ⎥

= −⎢ ⎥
⎢ ⎥⎣ ⎦

& &

&  

  

       (2-22)

  0  

s

sv

Z

b M
δ

δ

⎡ ⎤
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎣ ⎦

 

( ) ( ) ( )v v v v sx t A x t B tδ= +&  (2-23) 

( ) [     ]Txv t w q θ=  (2-24) 
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1
0              0                  0

          0                          

    0              0          1 0                1                 0

w q w q

w yy q w q B G

m Z Z Z mU Z

Av M I M M M z B z W

−− − −⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= − − −⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

& &

& &   (2-25) 

1              0

          0         (2-26)
0        0              0          1

w q w

v w yy q w

m Z Z Z
B M I M M

−− −⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= − −⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦

& &

& &  

 Disregarding the motions in the vertical plane will 

result in the horizontal equations of motions, which are 

shown below. 

( )
r rr v r v r r r rmv mr Y v y v Y r Y r Y tδδ= − + + + + +& && & &   (2-27) 

( )
r rzz v r v r r r rI r N v N v N r N r N tδδ= + + + +& && & &    (2-28) 

rψ =&   (2-29) 

As with the previous section in regards to the vertical 

plane, the horizontal dynamic equation is  

( ) ( ) ( )h h h h h rm x t a x t b tδ= +&  (2-30) 

where  

( ) [   ]T
hx t v r ψ=   (2-31) 

Again, as previously shown, this equation converted into a 

more functional form and the state and control matrices 

result as shown below. 

( ) ( ) ( )h h h h rx t A x t B tδ= +&   (2-32) 

1
0              0         0

           0                 0        (2-33)
0                  0        1 0           1           0

v r v r

h v zz r v r

m Y Y Y Y mU
A N I N N N

−− − −⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= − −⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

& &

& &  
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1              0   
           0         (2-34)

  0  0                  0        1

v r r

h v zz r r

m Y Y Y
B N I N N

δ
δ

−− −⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= − −⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦

& &

& &  

 

 

 

 

 

 

 

 

 



 20

THIS PAGE INTENTIONALLY LEFT BLANK 



 21

III. DIRECT METHOD FOR RAPID PROTOYPING  

A. HISTORICAL BACKGROUND 

1. General Description of Direct and Indirect Method  

From many years of research, it has been determined 

that the most precise approach in solving an optimal control 

problem is by the variational approach, which is based on 

the Pontryagin’s minimum principle.  This indirect approach 

requires the solution of the necessary conditions of 

optimality associated with the infinite dimensional optimal 

control problem rather than optimizing the cost of a finite 

dimensional discretization of the original problem directly.  

Using this method does require advance analytical skill in 

which one must generate numerical solutions of the resulting 

two-point boundary-value problem.  The minimum principle is 

used to eliminate the controls in this indirect method 

approach, resulting in a generally nonlinear function of the 

state and co-state variables.  This indirect approach allows 

for the generation of benchmark solutions, which will 

generally converge if only excellent initial guesses for the 

non-intuitive con-states are achieved.  Additionally, this 

requires the switching structure to be guessed correctly in 

advance.         

A direct method approach allows for rapid trajectory 

prototyping ability.  This method uses finite dimensional 

discretization of the optimal control problem to a nonlinear 

programming problem.  While the direct method approach does 

not allow for extremely great precision and resolution as 
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that of the indirect method, it does allow for a more 

practical application as its convergence robustness is far 

superior. 

2. History 

The ideal of the direct method approach was first 

developed by Euler in the early 1900’s, when he approached 

the solution of functions as finite sets of variables.  This 

approach was achieved by representing acceptable functions 

in the form of infinite power series 

0

( ) ,k
k

k

y x a x
∞

=

= ∑ (3-1) 

or by Fourier series 

0

1

( ) ( c o s s i n ) ,
2 k k

k

ay x a k x b k x
∞

=

= +∑ (3-2) 

or by any series in the form of  

1
( ) ( ) ,k k

k
y x a xϕ

∞

=

= ∑  (3-3) 

where ( )k xϕ  is a given function.  Thus, instead of an 

infinite series, the user is only considering a finite 

series, whose solution is simply the function of a set of 

unknown coefficients. 

 Ritz too developed a direct method, in which his method 

requires a field problem to be arranged, in which it will be 

used as an integral minimization.  Thus, allowing it to be 

used for problems which have variational principles.  

Galerkin obtained approximate solutions to boundary-value 

problems in a simpler way, which is why it is more of a 

universal process.  When Galerkin’s method is combined with 
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the interpolation equations of the method of finite 

elements, it allows one to solve both initial and boundary-

value problems, which Galerkin utilized to solve parabolic 

and elliptic partial differential equations.  

 In the 1950’s, aerospace engineers began to utilize the 

finite element method.  Due to vast improvements in 

computing in the following year, this method became 

popularized for numerous numerical simulations of physical 

problems dealing with stress analysis, structural and solid 

mechanics, heat transfer, and fluid mechanics among others.  

Resulting conclusions found that the previous fore mentioned 

methods when applied, will yield approximation for the 

minima from above or the maxima from below, thus, enabling 

the user to utilize them for rapid prototyping of optimal 

solutions or near-optimal solutions.  This allows for the 

ability to preset extreme trajectories and/or controls, 

while allowing for a calculational advantage, while 

providing a near-optimal solution with any varying degree of 

accuracy.     

 In the 1960’s, Taranenko applied a similar method to 

that Ritz-Galerkin to flight dynamics involving constraints 

on states and controls.  Continuing in his predecessors’ 

methods, he attempted to use continuous, unequivocal and 

differentiable functions which automatically satisfied 

boundary conditions of the function 

0
0 0

0

( ) ( ),  i=1,...4if i
i i i

f

x x
x x τ τ τ

τ τ
−

= + − +Φ
−

 (3-4) 

as the reference function for the Cartesian coordinates and 

speed.  In equation (3-4), τ is an argument, while ( )i τΦ  is a 
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continuous, unequivocal, and differentiable function which 

satisfies the boundary conditions 0( ) ( ) 0i i fτ τΦ = Φ = .  Taranenko 

further suggested the uses of the following equations or any 

of their linear combinations.   

1 0

1 0

( ) sin
n

i k
k f

A k τ ττ π
τ τ=

−
Φ =

−∑  (3-5) 

2
0

1
( ) ( ) ( )

n
k k

i k f
k

Aτ τ τ τ τ
=

Φ = − −∑ (3-6) 

1 23
0( ) ( ) ( )m m

i fτ τ τ τ τΦ = − −  (3-7) 

While there are no actual limitations, one could use 

any convenient function for their particular task.  State 

parameters and controls can then be resolved from the result 

of their inverse flight dynamics.   

  
Figure 5.    Splitting Original Interval 

 

In order to provide more flexibility without increasing 

the order 1 2 ( , )n m m , Taranenko recommended the splitting of 

the interval 0[ ; ]fτ τ  into pieces, in order to use lower order 

polynomials in order to describe the behavior of the state 
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variables ( 1,2,3,4)ix i = .  The higher order 1 2(  and )n or m m , the 

higher the number of pieces required in the piecewise case, 

thus the closer a near-optimal solution will be to the 

optimal solution.   

 Taranenko continued his research with the hopes of 

building a database of trajectories for numerous aircraft, 

in an effort to aid pilots in maneuvering their aircrafts, 

by suggesting the maneuvers optimal trajectory.  Due to the 

lack of computing speed of the day, it was discovered that 

the numerous optimization parameters would not allow for 

onboard computation of these trajectories.   

 As with most discoveries, this approach was overlooked 

until technology could appropriately catch-up with the 

computing requirements.  In 1997, Taranenko’s dream was 

realized by Yakimenko who tested these methods onboard a 

flying laboratory.  Yakimenko developed an algorithm which 

computes near-optimal trajectories.  These trajectories were 

found to be capable of satisfying all boundary conditions 

prior to the establishment of the trajectories, which 

allowed for decreased calculational time and the ability to 

conduct real time onboard trajectory computation.  

B. MATHEMATICAL DEVELOPMENT 

In order to develop the mathematics for this problem, 

the first step is to formulate an optimal control problem 

which will move the vessel from a starting point (initial 

point) to some final point.  If one chooses or is given both 

an initial and final position, which will also serve as the 

problems boundary conditions, a first order polynomial 
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representation of a trajectory linking both positions can be 

developed by using the following formulas:  

0 1( ) ( )Xx P a aτ τ τ= = +  (3-8) 

0 1( ) ( )yy P b bτ τ τ= = +  (3-9) 

As previously mentioned, τ  is given as any argument.  
One can then solve for any unknown coefficient by 

substituting any value for τ  and solving for these unknown 
coefficients with the following matrix equations:   

0 01   0
1  f f

a x
a xτ
⎡ ⎤ ⎡ ⎤⎡ ⎤

=⎢ ⎥ ⎢ ⎥⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 (3-10) 

0 01   0
1  f f

b y
b yτ
⎡ ⎤ ⎡ ⎤⎡ ⎤

=⎢ ⎥ ⎢ ⎥⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 (3-11) 

( )0
0 0

0

f

f

y y
y y x x

x x
⎡ ⎤−

= + −⎢ ⎥
−⎢ ⎥⎣ ⎦

 (3-12) 
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Figure 6.   Basic First Order Polynomial 

 

The straight line represented in the figure above, 

represents the satisfying of the initial boundary 

conditions.   

 While outlining the problem of an UNREP between the 

SCCC and a supply vessel, a straight line trajectory may not 

be the optimal trajectory to accomplish this objective, due 

to changes in course/speed, contact avoidance, and changes 

in rendezvous time.  Based on these foreseen events, a 

curved path by be more appropriate in achieving this goal.  

As outlined by other research endeavors and as previously 

mentioned in this thesis, a curved path can be achieved by 

breaking the problem into smaller pieces or as is standard 

naval practice, put in additional waypoints to the final 

position or objective.  While this seems simple enough, the 

added waypoints must then account for added boundary 

conditions of that particular leg, and an added time to the 
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next leg must also be taken into account.  While this is 

fine for typical naval applications, it does add to the 

overall computational time to achieve the optimal trajectory 

solution.        

 

Figure 7.   Curved Trajectory Using Waypoints 

 

In Figure 7, two waypoints were added to achieve a 

curved trajectory between the initial and final positions.  

It is of interest to note that in order to approximate this 

new path, it must be represented as a polynomial.  

Additionally, an added waypoint is a direct corresponding 

result to an increase in the order of the initial 

polynomial.  In this case the corresponding result would be 

a third order polynomial due to the addition of two 

waypoints.  If this new curved path is represented in the 

form of a third order polynomial, it will produce a smooth 

curve which is very similar to the outline of the waypoints, 

Y-axis 
(m) 
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while maintaining the existing boundary conditions.  Using a 

direct method approach, the vessels controls would be taken 

from the produced trajectory and the required states would 

then be produce by using inverse dynamics.         

 Assuming the initial boundary conditions remain the 

same, this third order polynomial representation of the 

intended trajectory can be displayed as previously shown 

with only minor changes as shown below:   

3

0
( ) ( ) i

X i
i

x P aτ τ τ
=

= =∑  (3-13) 

3

0
( ) ( ) i

y i
i

y P bτ τ τ
=

= =∑   (3-14) 

00 0
2 3 2 3

1 1 1 1 1 111 1
2 3 2 3

22 21 2 2 1 2 2
2 3 2 3

3 31 3 3 1 3 3

1  0    0    0  1  0    0    0
1       1      

1      1      

1      1      f

xa b
xa b
xa b
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τ τ τ τ τ τ

τ τ τ τ τ τ

τ τ τ τ τ τ

⎡ ⎤ ⎡ ⎤⎡ ⎤⎡ ⎤
⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ =⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦

0

1

2

f

y
y
y
y

⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥ = ⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎣ ⎦ ⎣ ⎦

 (3-15) 

 By taking into account the first derivative of the 

first order polynomial equations, added path curvature 

flexibility will be increased allowing the user to utilize 

boundary conditions to gain the equations for the velocity.   

 An example of the process for a single high-order 

polynomial approximation for the coefficients of (A) in a 

“2+2” case are shown below. 

0 0( ) (0)        ( )i i i i f ifx x x x xτ τ= = =  (3-16) 

0 0' ( ) ' (0) '       ' ( ) 'i i i i f ifx x x x xτ τ= = =   (3-17) 

0 0" ( ) " (0) "         " ( ) "i i i i f ifx x x x xτ τ= = =   (3-18) 
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5
2 3 4 5

0 1 2 3 4 5
0

( ) k
i i i i i i i ik

k
x a a a a a a aτ τ τ τ τ τ τ

=

= + + + + + =∑  (3-19) 

5
2 3 4 1

1 2 3 4 5
0

' ( ) 2 3 4 5 k
i i i i i i ik

k
x a a a a a kaτ τ τ τ τ τ −

=

= + + + + =∑  (3-20) 

5
2 3 2

2 3 4 5
0

" ( ) 2 6 12 20 ( 1) k
i i i i i ik

k
x a a a a k k aτ τ τ τ τ −

=

= + + + = −∑  (3-21) 
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a xτ τ τ
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 (3-22) 

C. HYPOTHETICAL TRAJECTORIES 

In order to create a random trajectory, the user must 

establish an initial and final position, which will be 

required to be stationary points.  Using Matlab’s Symbolic 

Toolbox, one can determine the coefficients of the example 

from the previous section as shown below. 

'' '' ' '
0 0 00 0 3

'' '' '
1 1 4 0

2 2 5

3 9     24 36     60( )                      0                      0
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if i if i if ii i i
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x x x x x xa x a
a x a x x x
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)

 

In order to conduct a single high-order polynomial 

approximation using a visual check, the inputs are set as 

below in the following table. 

 



 31

10 0x =  20 0x =  1 1fx =  2 1fx =  

10' 0.2x =  20' 1x =  1' 0.1fx =  2' 1fx = −  

10" varx =  20" 0.1x =  1" 0.1fx =  2" 0.1fx =  

 
Table 2.  Example Inputs 

 
where,  
 

"
10

1, , 2,....,10

{ 0.4; 0.1;0.2;0.5}
f

x

τ =

= − −
 

 
The resulting plots are the visual confirmation check in 
meters.   
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Figure 8.   Visual Check 
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Utilizing the before mentioned techniques above, a 

random trajectory was established using the SCCC concepts of 

operation to establish the conditions for this trajectory.  

This random trajectory is shown below. 
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Figure 9.   Random Trajectory Generation  
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IV. TRAJECTORY DEVELOPMENT AND VALIDATION 

A. INDENTIFIYING CONTROL PARAMETERS & CONSTRAINTS 

The SCCC UNREP with a supply vessel is a problem 

centered on navigation with the primary controlled 

parameters of concern being course and speed, which 

essentially makes this a two dimensional problem.  For the 

propose of this thesis, the two vessels in question will be 

in open ocean not constrained by draft, however, the body of 

water may have above water obstructions such as oil 

platforms.   

Viewing this problem, the constraints which come to 

mind are the rudder/speed rule of 15/15 for a total of 30 

overall.  Meaning, one could use a speed of 20 knots and a 

rudder of 10 knots for a total of 30.  An additional 

constraint will deal with limiting speed and/or rudder 

commands when within approximately 350 feet of the supply 

vessel as to limit the possibility of collision.     

B. INVERSE DYNAMICS 

Inverse dynamics computes the states of the 

instantaneous position of the vessel along the virtual arc 

of a give trajectory.  This process allows for reverse 

engineering of an executed trajectory in order to determine 

the required commands to achieve this maneuver while 

maintaining the necessary boundaries of constraints. 

In order to achieve the fore mentioned process, it is 

of note that the parameters of the reference trajectory of a 
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numerical solution are calculated in N points evenly 

distributed throughout the virtual arc, such that  

1( 1)f Nτ τ −∆ = −  (4-1) 

Time interval between two points is calculated as in 

equation (4-6) 

2 2
1 1

1 1
1

( ) ( )
2 j j j j

j j j
j j

x x y y
t t t

V V
− −

− −
−

− + −
∆ = − =

+
  (4-2) 

In order to transition from a measurement of position along 

the virtual arc to that of velocity, the kinematics for a 

navigational solution must be achieved and are shown below 

as an example. 

1 2 1 2 1 2

Given:
( ), ( ) and therefore ( ), ( ) and ( ), ( ) x t x t x t x t x t x t& & && &&

 

Kinematic equations: 

1
1 cosdxx V

dt
= = Ψ&  (4-3) 

2
2 sindxx V

dt
= = Ψ&  (4-4) 

2 2
1 2V x x= +& &   (4-5) 

2

1

arctan x
x

Ψ =
&

&
  (4-6) 

Convert those to the virtual domain (where the reference 

trajectories are developed) using the virtual speed 
d
dt
τλ =  

1 1
1

1 cosdx dx dtx V
d dt dτ τ λ

′ = = = Ψ (4-7) 
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2 2
2

1 sindx dx dtx V
d dt dτ τ λ

′ = = = Ψ  (4-8) 

We will set a separate 5th-order polynomial for ( )λ τ  similar 

to that of equation (3-29) 
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  (4-9) 

where 0λ′′ and fλ′′ being varied parameters and 0λ , 0λ′, fλ  and 

fλ′  defined as 

0 0Vλ = , 0 0λ′ = , f fVλ =  and 0fλ′ =   (4-10) 

Next, to address the constraints imposed on the control 

parameters (or in other words to account for the controllers 

dynamics) we also need to evaluate the following derivatives 

2 2 21 1 2 2
1 2 2 2

1 2

x x x xV V x x
x x

λ λ λ
′ ′′ ′ ′′+′ ′ ′ ′= = + +
′ ′+

&  (4-11) 

21 2 1 2
2

1

cosx x x x
x

λ λ
′ ′′ ′′ ′−′Ψ = Ψ = Ψ

′
&   (4-12) 

C. OPTIMIZATION 

In order to capitalize on the ability to optimize this 

problem a general block scheme approach is taken in order to 

accomplish this goal.   
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Figure 10.   General Block-Scheme 

 

In short, Figure 10 helps to explain that this is a 

cycle and the values of each parameter are weighted to 

ensure the errors from the minimization function are 

continuously calculated until they are approximately zero, 

which will allow the UNREP rendezvous to be accomplished. 

    Perforamance Index Cost Functions Weight x Penalty= +∑ ∑  (4-13) 

Define boundary conditions

Choose reference functions

Compute the coefficients of reference functions

Guess on initial values of variable parameters

Integrate speed and find states and controls  
along the virtual arc via inverse dynamics 

Compute a cost function 

Change the values of variable parameters

Compute penalties

STOP Tolerance
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Therefore the computational procedure, shown on Figure 10 

looks as follows.  We start from guessing on varied 

parameters, which are 10x′′ , 20x′′ , 1 fx′′ , 2 fx′′ , fλ′′, 0λ′′ and fτ . Then 

using the given initial and final conditions, which are 

shown in Table 4 below,  

 

Initial 

Position x1 

Initial 

Position x2

Final 

Position x1

Final 

Position x1 

0 0 5000 yds 5000 yds 

 
Table 3.  Initial & Final Positions 

 

one can compute the coefficients of the reference functions, 

which are based off of algebraic polynomials of degree “n” 

with the virtual arc “τ ” as the argument.  This allows for 

independent optimization of the velocity history along the 

trajectory.  Next the coefficients of the reference 

functions are determined using MATLAB.  The user then makes 

an initial guess on the values of the variable parameters.   

Using inverse dynamics, the states and controls along 

the virtual arc are determined.  From this point the cost 

function and penalties are computed and if these items are 

found to within tolerance then the computation stops.  If 

the tolerances are not met, the values of the variable 

parameters are changed and the states and controls along the 

virtual arc are recalculated and the cycle repeats as shown 

in Figure 10.  

Finally we estimate the performance index and evaluate 

penalties, the penalty weights are shown in Table 4.   
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Penalty Parameter Weights 

Time 10-3 

Sway Velocity 10 

Speed 10 

 
Table 4.  Penalty Weights 

 

Additionally, the penalties are calculated by the equations 

shown below.   

2Time Penalty = (total time - T)   (4-14) 

2
maxSpeed Penalty = max([0,speed - speed ])  (4-15) 
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V. RESULTS AND CONCLUSIONS 

A. RESULTS 

Using the technique described throughout this thesis, 

the following results were achieved for three Specialized 

Command and Control Crafts (SCCC) conducting an Underway 

Replenishment at Sea with a standard supply vessel.   

For the three SCCCs, the initial and final velocities 

are the same, additionally for two out of three of the 

SCCCs, the initial angles are the same, however all three 

have the same final angles.  The change in one of the 

initial angles was done to allow for a better visual image 

of the scenario.  For these results the times of arrival 

were all the same, however to accommodate the supply vessel 

all SCCCs would have varying times of arrival in order for 

the supply ship to connect one vessel then move to the next 

one and so on.  Additionally, once along side, the ability 

for the real time updating at a rate of (1Hz) would allow 

the supply vessel to alter course while all SCCCs maintain 

their stations.   
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Figure 11.   Multiple SCCC Scenario 

 
 

Simultaneous arrival at T = 450 s  
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Figure 12.   Close-up of Initial Position of Multiple Scenario 
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Figure 13.   Close-up of Final Position of Multiple SCCC Scenario 
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Figure 14.   Controls for First SCCC 
 



 44

0 50 100 150 200 250 300 350 400 450 500
0

10

20

30

Time, s

S
pe

ed
, m

/s

0 50 100 150 200 250 300 350 400 450 500
0

20

40

60

Time, s

H
ea

di
ng

, o

 
Figure 15.   States for First SCCC 
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Figure 16.   Virtual Domain Parameters for First SCCC 
 

B. CONCLUSIONS 

This model using the fore mentioned design method 

allows the problem boundary conditions to be satisfied 

beforehand; eliminates wild trajectories which decreases 

required computer computing times;  allows for real time 

updating (1Hz) of the required outputs due to the speed at 

which calculations can be done; and allows for the 

implementation of multiple agents for collision-free 

motions.   

Additionally benefits of this technology would be that 

it allows for the incorporation of a heads up display which 

could use standard maneuvers to build a database of near-

optimal trajectories calculated beforehand.  These near-
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optimal trajectories could all for the officer of the deck 

on board Naval vessels to not just mentally visualize the 

required commands, but also allow them to actually see a 

simulation of where them will end up, thus adding to the 

overall situational awareness.  In principle, if this 

onboard computer was capable of doing the required updates 

often enough, the need for a traditional feedback controller 

would be unnecessary.  The computer would then be capable of 

continuously regenerating from the vessels actual position 

instead of fighting the disturbance of the trajectories.   

 
 
 
 
 



 47

APPENDIX. MATLAB CODE 

A. STARTMESCCC.M 

% This is a main script 
clear all, close all, clc 
syms tf x0 xp0 xpp0 xf xpf xppf 
  
%% Setting the boudary conditions 
global posxi vxi posxf vxf 
global posyi vyi posyf vyf 
vi = 5*0.5144; vf = 13*0.5144; 
posxi = -50;       posyi = 60;                   % initial position, m 
posxf = 4650;     posyf = 2250;                  % final position, m 
anglei = 0; anglef=0; 
vxi   = vi*cos(anglei); vyi = vi*sin(anglei);    % components of initial 
velocity 
vxf   = vf*cos(anglef); vyf = vf*sin(anglef);    % components of final 
velocity 
  
%% Defining optimization problem 
global Cost_T Fine_Speed Fine_Accel Fine_YawRate Psi_dot_max v_max a_max 
T 
global wv wvd wPsid 
R=14;                     % lateral seperation distance, m 
v_max=40*0.5144;          % maximum speed, m/s/s 
a_max=10.7;               % maximum acceleration, m/s/s 
%T  = 2*sqrt((posxf-posxi)^2+(posyf-posyi)^2)/(vi+vf)/2;  % 
predetermined time of arrival, s 
T = 550; 
Psi_dot_max = 10*pi/180;  % maximum yaw rate, rad/s 
wv  = 10 ;                % weighting coefficient for speed 
wvd  = 10;                % weighting coefficient for accelaration 
wPsid = 10;               % weighting coefficient for yaw rate 
  
%% Guessing on the varied parameters 
guess(1)=0.02*sqrt((posxf-posxi)^2+(posyf-posyi)^2); % virtual arc 
length 
guess(2)=rand*0.01;        % initial acceleration in x 
guess(3)=rand*-0.0001;     % initial acceleration in y 
guess(4)=rand*-0.0001;     % final acceleration in x 
guess(5)=rand*0.001;       % final acceleration in y 
guess(6)=rand*-0.0001;     % initial acceleration in lambda 
guess(7)=rand*0.0001;      % final acceleration in lambda 
  
%% Defining coefficients (units are commented) 
%DefineSCCC 
%% Compute Coefficients  
global a M 
A=[1 0  0      0      0       0; 
   0 1  0      0      0       0; 
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   0 0  1      0      0       0; 
   1 tf tf^2/2 tf^3/6 tf^4/12 tf^5/20; 
   0 1  tf     tf^2/2 tf^3/3  tf^4/4; 
   0 0  1      tf     tf^2  tf^3]; 
b=[x0 xp0 xpp0 xf xpf xppf]'; 
a=A\b; 
a=collect(a,tf); 
M=length(a); 
  
%% Calling the optimization routine 
opt=optimset('Display','iter','TolX',1e-4,'TolFun',1e-4,'MaxIter',10); 
[guess_opt,fval,exitflag]=fminsearch('Trajectory',guess,opt); 
%Trajectory(guess); 
  
%% Displaying cost function and penalties 
fprintf('Cost function               :  %6.2g\n',Cost_T) 
fprintf(' Penalty in speed           :  %6.2g\n',Fine_Speed) 
fprintf(' Penalty in acceleration    :  %6.2g\n',Fine_Accel) 
fprintf(' Penalty in yaw rate        :  %6.2g\n\n',Fine_YawRate) 
  
%% Displaying optimal parameters 
%guess_opt=guess; 
fprintf('Arc lenght = %6.2f\n',guess_opt(1)) 
fprintf('             initial accel    final accel\n') 
fprintf('along x  :    %6.2e        %6.2e\n',[guess_opt(2) 
guess_opt(3)]) 
fprintf('along y  :    %6.2e        %6.2e\n',[guess_opt(4) 
guess_opt(5)]) 
fprintf('in lambda:    %6.2e        %6.2e\n',[guess_opt(6) 
guess_opt(7)]) 
  
%% Plotting the results 
PlotResults 

B. TRAJECTORY.M 

function PI=trajectory(guess) 
%% This function computes states and controls for the current guess 
global a M 
global tf x0 xp0 xpp0 xf xpf xppf  
syms tf x0 xp0 xpp0 xf xpf xppf  
global posxi vxi posxf vxf 
global posyi vyi posyf vyf 
global t x1 x2 v Psi tau lam v_dot Psi_dot 
  
%% Current values of varied parameters 
tauf =guess(1);   % virtual arc length 
accxi=guess(2);   % initial acceleration in x 
accyi=guess(3);   % initial acceleration in y 
accxf=guess(4);   % final acceleration in x 
accyf=guess(5);   % final acceleration in y 
accli=guess(6);   % initial acceleration in lambda 
acclf=guess(7);   % final acceleration in lambda 
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%% Defining coordinates in N nodes in the virtual domain 
a1 = subs(a,{'x0','xp0','xpp0','xf','xpf','xppf','tf'},... 
                                    
{posxi,vxi,accxi,posxf,vxf,accxf,tauf}); 
a2 = subs(a,{'x0','xp0','xpp0','xf','xpf','xppf','tf'},... 
                                    
{posyi,vyi,accyi,posyf,vyf,accyf,tauf}); 
a3 = subs(a,{'x0','xp0','xpp0','xf','xpf','xppf','tf'},... 
                                                
{1,0,accli,1,0,acclf,tauf}); 
ax1=diag([1,1,1/2,1/6,1/12,1/20])*a1; 
ax2=diag([1,1,1/2,1/6,1/12,1/20])*a2; 
ax3=diag([1,1,1/2,1/6,1/12,1/20])*a3; 
  
 tau=linspace(0,tauf); 
  
 for i=1:M 
   cx1(i)=ax1(M+1-i); 
   cx2(i)=ax2(M+1-i); 
   cx3(i)=ax3(M+1-i); 
 end 
x1  = polyval(cx1,tau); 
x2  = polyval(cx2,tau); 
lam = polyval(cx3,tau); 
     
%% Defining coordinates' derivatives in N nodes in the virtual domain 
    cx1_prime = cx1.*[5:-1:0]*eye(6,5); 
    cx2_prime = cx2.*[5:-1:0]*eye(6,5); 
    cx3_prime = cx3.*[5:-1:0]*eye(6,5);    
    x1_prime = polyval(cx1_prime,tau); 
    x2_prime = polyval(cx2_prime,tau); 
   lam_prime = polyval(cx3_prime,tau); 
    
%% Defining coordinates' second-order derivatives in N nodes 
    ex1_2prime=cx1_prime.*[4:-1:0]*eye(5,4); 
    ex2_2prime=cx1_prime.*[4:-1:0]*eye(5,4);    
    x1_2prime=polyval(ex1_2prime,tau);                                       
    x2_2prime=polyval(ex2_2prime,tau); 
     
%% Computing the states and controls using Inverse Dynamics 
N=length(x1); 
    del_tau = tauf/(N-1); 
    t(1)    = 0;                            % time 
    v(1)    = sqrt(vxi^2+vyi^2);            % initial speed, m/s 
    Psi     = atan2(x2_prime,x1_prime);     % heading, rad 
for j=2:N 
sq         = sqrt((x1_prime(j))^2+(x2_prime(j))^2); 
v(j)       = lam(j)*sq;                     % speed, m/s 
dt         = 2*sqrt((x1(j)-x1(j-1))^2+(x2(j)-x2(j-1))^2)/(v(j)+v(j-1));      
t(j)       = t(j-1)+dt; 
v_dot(j)   = lam_prime(j)*sq+... 
             
lam(j)^2*((x1_prime(j)*x1_2prime(j))+(x2_prime(j)*x1_2prime(j)))/sq; 
Psi(j)     = atan2(x2_prime(j),x1_prime(j)); 
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Psi_dot(j) = (x1_prime(j)*x2_2prime(j)-x1_2prime(j)*x2_prime(j))... 
             /x1_prime(j)^2*cos(Psi(j))^2; 
end 
PI = PerformanceIndex; 
return 
     
function PI=PerformanceIndex 
%% This function computes the combined performance index 
global t x1 x2 v Psi tau lam v_dot Psi_dot 
global Cost_T Fine_Speed Fine_Accel Fine_YawRate Psi_dot_max v_max a_max 
T 
global wv wvd wPsid 
    Cost_T          = (t(end)-T)^2; 
    Fine_Speed      = max([0,abs(v)-v_max])^2; 
    Fine_Accel      = max([0,(abs(v_dot)-a_max)])^2; 
    Fine_YawRate    = max([0,(abs(Psi_dot)-Psi_dot_max)])^2; 
%    Fine_A          = max(0,R-min(sqrt((x1-posxfr).^2+(x2-
posyfr).^2)))^2; 
PI = Cost_T + wv*Fine_Speed + wvd*Fine_Accel + wPsid*Fine_YawRate;  
return 

C. PLOTRESULTS.M 

%% This script plots the results of optimization 
global t x1 x2 v Psi tau lam v_dot Psi_dot 
global Cost_T Fine_Speed Fine_Accel Fine_YawRate Psi_dot_max v_max a_max 
T 
  
%% Bird-eye view  
figure('Name','2D View') 
title('Optimal Trajectory') 
plot(x1,x2) 
xlabel('x_1, m'), ylabel('x_2, m') 
axis equal, grid on, hold on 
plot(x1(1),x2(1),'rO') 
plot(x1(end),x2(end),'rO') 
  
%% Plotting time histories 
figure('Name','States') 
subplot(2,1,1) 
plot(t,v), hold 
xlabel('Time, s'), ylabel('Speed, m/s') 
plot([0 t(end)],v_max*[1 1],'r--') 
subplot(2,1,2) 
plot(t,Psi*180/pi) 
xlabel('Time, s'), ylabel('Heading, ^o') 
  
figure('Name','Controls') 
subplot(2,1,1) 
plot(t,v_dot), hold 
xlabel('Time, s'), ylabel('Acceleration, m/s^2') 
plot([0 t(end)],a_max*[1 1],'r--') 
plot([0 t(end)],-a_max*[1 1],'r--') 
subplot(2,1,2) 
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plot(t,Psi_dot*180/pi), hold 
xlabel('Time, s'), ylabel('Yaw rate, ^o/s') 
plot([0 t(end)],Psi_dot_max*[1 1]*180/pi,'r--') 
plot([0 t(end)],-Psi_dot_max*[1 1]*180/pi,'r--') 
  
figure('Name','Virtual Domain Parameters') 
subplot(2,1,1) 
plot(t,tau) 
xlabel('Time, s'), ylabel('\tau') 
subplot(2,1,2) 
plot(t,lam) 
xlabel('Time, s'), ylabel('\lambda, s^{-1}') 

D. TEST.M 

close all 
SupplyShip(4700,2200,0.2) 
SCCCship(50,0,1) 
SCCCship(40,90,1) 
SCCCship(-50,60,1) 

E. SUPPLYSHIP.M 

function SupplyShip(X,Y,Psi) 
% X,Y - the coordinates of the ship's center in the local tangent plane 
in meters 
% Psi - the orientation of the ship in the local tangent plane in 
radians 
SCCCx=[0 250 700 754.6 700 250 0]*0.3048; 
SCCCy=[100 107 107 53.7 0 0 7]*0.3048; 
  SCCCx=SCCCx-mean(SCCCx); 
  SCCCy=SCCCy-mean(SCCCy); 
  len=sqrt(SCCCx.^2+SCCCy.^2); 
  ang=atan2(SCCCy,SCCCx); 
    SCCCx=X+len.*cos(Psi-ang); 
    SCCCy=Y+len.*sin(Psi-ang); 
patch(SCCCx,SCCCy,'c') 
axis equal 

F. SCCCSHIP.M 

function SCCCship(X,Y,Psi) 
% X,Y - the coordinates of the ship's center in the local tangent plane 
in meters 
% Psi - the orientation of the ship in the local tangent plane in 
radians 
SCCCx=[0 130 135 130 0]*0.3048; 
SCCCy=[68 68 34 0 0]*0.3048; 
  SCCCx=SCCCx-mean(SCCCx); 
  SCCCy=SCCCy-mean(SCCCy); 
  len=sqrt(SCCCx.^2+SCCCy.^2); 
  ang=atan2(SCCCy,SCCCx); 
     



 52

    SCCCx=X+len.*cos(Psi-ang); 
    SCCCy=Y+len.*sin(Psi-ang); 
patch(SCCCx,SCCCy,'m') 
axis equal 
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